Page 172 - Maths Skills - 7
P. 172

170                                                                                                  Maths

        Example 5:  In an isosceles triangle ABC,  AB = AC and ∠A = 50º. If BO and CO are the bisectors of ∠B and
                       ∠C respectively, find ∠BOC.
        Solution:      We know that the sum of the three angles of a triangle is 180°.                     A

                       \           ∠A + ∠B + ∠C  = 180º                                                   50°
                       or           50º + ∠B + ∠C  = 180º
                       or                    ∠B + ∠C  = 180º – 50º                                         O
                       or                    ∠B + ∠C  = 130º

                       Since  ∠B = ∠C,                                                              B             C
                       \  ∠B = ∠C =   130°  = 65º.
                                        2
                       Since OB and OC are bisectors of ∠B and ∠C respectively,

                       \           ∠OBC = ∠OCB  =     65°  = 32 1°
                                                       2        2
                       In DOBC, we have ∠OBC + ∠OCB + ∠BOC = 180º
                               1°      1°
                             32    + 32   + ∠BOC  = 180º
                                2      2
                                      65º + ∠BOC  = 180º
                                            ∠BOC  = 180º – 65º = 115º

                       Hence,               ∠BOC  = 115°.

        Example 6:  In DABC, if ∠A = 2 ∠B and ∠C = 3∠B, find all the angles.
        Solution:      In DABC, we know that ∠A + ∠B + ∠C = 180º
                       or              2∠B + ∠B + 3∠B = 180º                          [Q ∠A = 2∠B and ∠C = 3∠B]
                       or                           6∠B = 180º

                       or                            ∠B =  180°  = 30º
                                                             6
                       But,                          ∠A = 2∠B
                       \                             ∠A = 2 × 30º = 60º
                       And                           ∠C = 3∠B

                       \                             ∠C = 3 × 30º = 90º
                       Hence, ∠A = 60°, ∠B = 30° and ∠C = 90°.

        Example 7:  If the sides of a triangle are produced in order, show that the sum of the exterior angles so formed
                       is 360º.

        Solution:      In DABC in figure, we have                                               D
                            ∠1 + ∠4 = 180º              ...(i) [Linear pair property]           2  A
                            ∠2 + ∠5 = 180º             ...(ii) [Linear pair property]              5

                            ∠3 + ∠6 = 180º            ...(iii) [Linear pair property]
                       Adding (i), (ii) and (iii), we get                                                    1
                               ∠1 +  ∠4 + ∠2 + ∠5 + ∠3 + ∠6  = 180º + 180º + 180º        B  3 6          4  C     F
                       or       ∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6  = 540º                      E
                       or    (∠1 + ∠2 + ∠3) + (∠4 + ∠5 + ∠6)  = 540º

                       or               (∠1 + ∠2 + ∠3) + 180º  = 540º                      [Q ∠4 + ∠5 + ∠6 = 180º]
   167   168   169   170   171   172   173   174   175   176   177