Page 177 - Maths Skills - 7
P. 177

The Triangle and Its Properties                                                                        175

        Example 2:  In Fig., find the values of ∠x and ∠y.









        Solution:      In DABC, AB = AC                                                                      [Given]

                       \  ∠ABC = ∠ACB                       [Q Angles opposite to equal sides of a D are always equal]

                          But, ∠DBC + ∠ABC = 180°                                                    [Q Linear pair]
                       ⇒  130° + ∠ABC = 180°

                       ⇒  ∠ABC = 180° – 130° = 50°
                       Q  ∠ABC = 50°

                       \  ∠ACB = 50°
                          But in DABC,

                          ∠BAC + ∠ABC + ∠ACB = 180°                                          [Q Angle sum property]
                       ⇒  ∠y + 2 ∠ABC = 180°                                                    [Q ∠ABC = ∠ACB]

                       ⇒  ∠y + 2 × 50° = 180°
                       ⇒  ∠y = 180° – 100° = 80°

                          Also, ∠ACE + ∠ACB = 180°                                                   [Q Linear pair]

                       ⇒  ∠x + 50° = 180°
                       ⇒  ∠x = 180° – 50° = 130°

                          Hence, ∠x = 130° and ∠y = 80°.

        Example 3:  In Fig., DABC is an isosceles triangle with
                       AB = AC and ∠A = 40°. Find the measure of
                       the other two angles.


        Solution:      In DABC,  AB = AC                                                                     [Given]

                       \  ∠B = ∠C                          [Q  Angles opposite to equal sides of a D are always equal]

                          Using angle sum property of a triangle, we have ∠A + ∠B + ∠C = 180°

                       ⇒  ∠A + 2∠B = 180°                                                             [Q ∠B = ∠C]

                       ⇒  2∠B = 180° – 40° = 140°

                       ⇒  ∠B = 70°

                       \  ∠B = ∠C = 70°.
   172   173   174   175   176   177   178   179   180   181   182