Page 171 - Maths Skills - 7
P. 171

The Triangle and Its Properties                                                                        169


               Fact-o-meter
             �  In an acute-angled triangle, all the altitudes lie inside the triangle.
             �  In an obtuse-angled triangle, all the altitudes donot lie inside the triangle.
             �  In a right-angled triangle, two altitudes coincide with two sides of a triangle.
             �  The point where the three altitudes of the triangle coincide is called the orthocentre of the triangle.




              Let’s Attempt

        Example 1:  If the angles of a triangle are in the ratio 2 : 3 : 4, find the angles.
        Solution:      Let the measures of the given angles be 2x, 3x and 4x. Then,

                                 2x + 3x + 4x = 180º                   Therefore, the measures of the three angles are
                       or                      9x = 180º               2x = 2 × 20º = 40º, 3x = 3 × 20º = 60º,
                       or                   x =  180°  = 20º           and 4x = 4 × 20º = 80º.
                                                  9
        Example 2:  In triangle ABC, the exterior angle ACD is 110º. Find the measure of ∠BAC, if ∠ABC = 54º.

        Solution:      We know that the exterior angle of a triangle is equal to the sum of the two interior opposite angles.
                       \       ∠ACD = ∠ABC + ∠BAC                                                         A
                       or        110º = 54º + ∠BAC
                       or     ∠BAC = 110º – 54º = 56º                                                         110°

                       Hence,  ∠BAC = 56°.                                                         B  54°     C   D
        Example 3:  Find the measures of all the angles of an equilateral triangle.

        Solution:      Let DABC be an equilateral triangle.
                          \  ∠A = ∠B = ∠C
                          But, we know that the sum of all the angles of a triangle is 180º.
                          \   ∠A + ∠B + ∠C = 180º                             A
                          or   ∠A + ∠A + ∠A = 180º                                              [Q ∠A = ∠B = ∠C]

                          or                     3∠A = 180º

                          or                       ∠A =  180°  = 60º    B           C
                                                  3
                       Similarly, ∠B = ∠C = 60º
                       Hence, the measures of each of the angles of an equilateral triangle ∠A, ∠B and ∠C is equal to 60º.

        Example 4:  The vertical angle of an isosceles triangle is 64º. Find the base angles.
        Solution:      Let DABC be an isosceles triangle where AB = AC and base angles ∠B and ∠C are of equal
                       measure x. Then,
                         ∠A + ∠B + ∠C = 180º
                              x + x + 64º = 180º

                       or       2x + 64º = 180º                                                            A
                       or               2x = 180º – 64º    or  2x = 116º                                  64°
                                           116°
                       or              x =      = 58º
                                            2                                                          x        x
                       Therefore, each base angle is 58º.                                          B               C
   166   167   168   169   170   171   172   173   174   175   176