Page 95 - Mathematics Class - IX
P. 95

PB    BC       PB    PD      e  + a  f
               On taking (i) and (ii), we have,   =     ⇒       =      ⇒        =
                                               PD  DA       BC    AD        b     d
               Now, convert e in the form of a, b, c and d, we have

                                                   dad +(  cb)
                                                e =   2    2                                                   ...(iii)
                                                     b −  d
               On taking (ii) and (iii), we have
                                             BC  =  PC  ⇒   PC  =  PA  ⇒  f  + c  =  e
                                             DA    PA       BC   DA         b     d

               Now, convert f in the form of a, b, c and d, we have
                                                   dcd +(  ab)
                                               f =    2    2                                                   ...(iv)
                                                     b −  d

                                          dad(  +  cb)         dcd(  +  ab)
              On putting the values of e =   2    2   and   f =    2    2   in 2s = e + a + f + c + b.
                                            b −  d               b −  d

              We have
                                                    bc ++ −(  a  b  d)
                                                s =                                                             ...(v)
                                                             d
                                                         ( 2  b + )

               Now, evaluate (s – e – a), we have
                                                   bc −+ +(  a  b  d)
                                               a
                                         s −− =                     [From Eqn (iii) and (v)]                   ...(vi)
                                            e
                                                             d
                                                       2 ( b + )
               Now, evaluate (s – f – c), we have
                                                   b −+ ++(  c  a  b  d)
                                        s −  f − =                    [From Eqn (iv) and (v)]                 ...(vii)
                                                c
                                                              d
                                                        2 ( b + )
              Now, evaluate (s – b), we have
                                                   bc +− +(  ab  d)
                                                b
                                            s −=                    [From Eqn (v)]                            ...(viii)
                                                             d
                                                         ( 2  b − )
               Now, putting the values from Eqs. (v), (vi), (vii) and (viii) to Eq. (ii), we get

                                                                             b
                                                bc +− + ) 
                                                                      c
                                                                                               b
                                                                                                   d 
                                                                                            a
                    2
                                                                                 d   (
                                                                   (
                             bc − ++ )
                  b −  d 2   (    a  b   d   (    ab     d    b −+ aa ++ )        bc ++ − )
               A =                                                                             
                                                                                               d
                     b 2        2( b + )        2( b − )           ( 2  b + )       ( 2  b − )  
                                                                            d
                                       d
                                                         d
                 ⇒     A = (  s −  as −) (  bs −) (  cs −) (  d)
                                                                                                 c
                                                                                             b
                                                                                         a ++ +     d
                where, s is the semi-perimeter of the cyclic quadrilateral and is given by  s =       .
                                                                                               2
        INFERENCE
        The area of cyclic quadrilateral  A = ( s −  as −) (  bs −) (  cs −) (  d)
                                                                                                                93
   90   91   92   93   94   95   96   97   98   99   100