Page 93 - Mathematics Class - IX
P. 93

PROJECT  3






        AIM

        To develop Heron’s formula for area of a triangle.
                                                                                    b              a
                                                                            h
        PROCEDURE
        Let a, b and c be the three sides and h is the altitude of ∆ABC.
        Let s be the semi-perimeter of the triangle, then                    A      d       D    (c– d )   B
                                           2s = a + b + c                                                       ...(i)
        Let AD = d, then                   DB = c – d

        In right ∆ADC and right ∆CDB,
                                            b  = h  + d 2                                                      ...(ii)
                                             2
                                                 2
        and                                 a  = h  + (c – d)                          [by using Pythagoras theorem]
                                                 2
                                             2
                                                           2
        ⇒                                   a  = h  + c  + d  – 2cd              [ (A – B)  = A  + B  – 2 AB] ...(iii)
                                                          2
                                                 2
                                                      2
                                             2
                                                                                                     2
                                                                                            2
                                                                                                2
        On subtracting Eqn. (ii) from Eq. (iii), we get
                                       a  – b  = c  – 2cd
                                                 2
                                             2
                                         2
                                                                               2
                                                                                   2
                                                                             c −  a +  b 2
        ⇒                                 2cd = c  – a  + b       ⇒      d =
                                                          2
                                                 2
                                                      2
                                                                                   c 2
                                                            2
                                                                 2
                                                       2
                                                 2
        From Eqn. (ii),            h  = b  – d  = b  –   c −  a +  b  2
                                    2
                                         2
                                             2
                                                     
                                                                  
                                                           c 2   
        On solving
                                                        2  ss −(  as −)(  bs c−)(  )
                                                    h =                              [taking positive square root] ...(iv)
                                                                   c
                                           1
        We know,           area of ∆ABC =    × base × altitude
                                           2
                                          1             1       2 ss( −  as) ( −  bs c) ( −  )
                                        =  × c × h  ⇒    × c ×                            [from Eqn. (iv)]
                                          2             2                   c
        ⇒                      Area of ∆ =  ss( −  as) ( −  bs c) ( −  )
        This is called Heron’s formula of any triangle.
        INFERENCE
                                            b
                                         a ++   c
        Semi-perimeter of a triangle, s =
                                            2
        Area of triangle by Heron’s formula =  ss( −  as) ( −  bs c) ( −  )
        EXTENDED TASK
        Sides of a triangle are 12 cm, 10 cm and 5 cm. Find the area of the triangle using Heron’s formula.
                                                                                                                91
   88   89   90   91   92   93   94   95   96   97   98