Page 81 - Maths Skills - 8
P. 81

Algebraic Expressions and Identities                                                                    79

          4.  Find the products of the following.

             (i)  (3x – 2)(5x  + 6x + 2)      (ii)  (x  + y  + z )(xy + yz)   (iii)  (x + y)(x  – xy + y )
                                                                                                    2
                                                            2
                                                    2
                                                        2
                                                                                           2
                           2
                                                                                      3              1
            (iv)  (5x  + y)(3x + 2y)          (v)  (x  + y )(x  – xy + y )    (vi)     x   3y    2     x    y
                                                        3
                   2
                                                           2
                                                                    2
                                                    3
                                                                                       2
                                                                                      5              3
          5.  Simplify.
             (i)  (3y + 2)(y – 2) – (7y + 3)(y – 4)           (ii)  (2x – 3y)(x + y) – (5x + 2y)(x – y)
            (iii)  x  + (3x – y)(3x + y + y )                 (iv)  (a  – 3a + 5)(2a – 3) – (5a  + 3a – 3)(a – 1)
                 2
                                                                                            2
                                                                    2
                                      2
        STANDARD IDENTITIES
        An identity is an equality, which is true for all values of the variables.
        The basic important identities are;
        Identity 1: (a + b)  = a  + 2ab + b 2                     Identity 2: (a – b)  = a  – 2ab + b 2
                                                                                    2
                               2
                          2
                                                                                        2
        Proof: We have, (a + b)   = (a + b) × (a + b)             Proof: We have,  (a – b)   = (a – b) × (a – b)
                               2
                                                                                         2
                                  = a (a + b) + b (a + b)                                  = a(a – b) – b(a – b)
                                  = a  + ab + ba + b 2                                     = a  – ab – ba + b 2
                                    2
                                                                                              2
                                  = a  + 2ab + b 2                                         = a  – 2ab + b 2
                                    2
                                                                                              2
                                                                                         2
                                                                                              2
                               2
           \             (a + b)   = a  + 2ab + b 2                   ∴           (a – b) = a  – 2ab + b 2
                                    2
        Identity 3:  (a + b)(a – b) = a  – b 2                    Identity 4: (x + a) (x + b) = x  + (a + b)x + ab
                                                                                               2
                                     2
        Proof: We have,  (a + b)(a – b) = a(a – b) + b(a – b)     Proof: (x + a) (x + b) = x (x + b) + a (x + b)
                                                                                                   2
                                       = a  – ab + ba – b 2                                     = x  + bx + ax + ab
                                          2
                                                                                                   2
                                       = a  – b 2                                               = x  + (a + b)x + ab
                                          2
                                                                                                   2
            ∴            (a + b)(a – b) = a  – b 2                       ∴        (x + a) (x + b) = x  + (a + b)x + ab
                                          2
              Let’s Attempt
        Example 1:  Find the following products.

                       (i)      4  x    7     4  x   7                (ii)  (2x + 3y)(2x + 3y)



                              5        5

        Solution:      (i)  We have,       4  x    7     4  x   7    4  x    7   2



                                        5        5         5
                                                  4   2         4
                                              =     x     + 2 ×    x    × 7 + 7 2        [  (a + b)  = a  + 2ab + b ]
                                                                                                                   2
                                                                                                        2
                                                                                                    2
                                                  5             5
                                              =   16  x +  2  56  x +  49
                                                25      5
                       (ii)  We have,
                            (2x + 3y)(2x + 3y) = (2x + 3y)  = (2x)  + 2 × 2x × 3y + (3y)     [ (a + b)  = a  + 2ab + b ]
                                                                                                                   2
                                                                                                        2
                                                                                                    2
                                                                                   2
                                                        2
                                                               2
                                                          = 4x  + 12xy + 9y 2
                                                             2
   76   77   78   79   80   81   82   83   84   85   86