Page 79 - Maths Skills - 8
P. 79

Algebraic Expressions and Identities                                                                    77

          2.  Find the products of:
             (i)  (– 2xy )(5y)(– 3z )                         (ii)  (ab)(bc)(ca)
                      2
                                2

                                                                      5      9       7
            (iii)  (6a b)(– 2b c)(3ac )                       (iv)     ab     bc     ca
                                  2
                           2
                    2
                                                                      9      7      5
                                                                  1
          3.  Find the value of (3p q) × (8q ), when p = 1 and q =          .
                                          3
                                 2

                                                                    4
                                            1  2
          4.  Find the value of (– 8x y ) ×     xy    , when x = – 1 and y = 2.
                                   2 3
                                            5
          5.  Find the product of (3a b ), (– 7a ) and (5a b ), and then verify the result for a = 2 and b = 3.
                                                       2 2
                                             2
                                    2 3
          6.  Find the product of the following.
             (i)  2x(3x + y )                                 (ii)  (– 3y)(x  + 3xy)
                                                                          2
                         2
            (iii)  3a (4a – 5a )                              (iv)  – 8a b(– 3a  – 2b)
                           2
                                                                       2
                                                                             2
                   2
             (v)  − 5 abc 18 abc  −  3  abc 2              (vi)  7a(0.1a  – 0.5b)
                                                                          2
                              2
                        
                  9     15        10     
        Multiplication of Two Binomials
        In multiplication of two binomials, we use the distributive law twice to get the required product,
               i.e.,   (a + b) × (c + d) = a × (c + d) + b × (c + d)
                                        = (a × c) + (a × d) + (b × c) + (b × d) = ac + ad + bc + bd
        For example, (2a + 3b) × (6a – b)
               = 2a (6a – b) + 3b (6a – b) = (2a × 6a – 2a × b) + (3b × 6a – 3b × b)

               = 12a  – 2ab + 18ab – 3b  = 12a  + 16ab – 3b 2
                                        2
                                               2
                     2
        Multiplication of a Binomial and a Trinomial
        To multiply a binomial by a trinomial, we simply apply distributive law as many times as required,
               i.e.,   (a + b) × (p + q + r) = a (p + q + r) + b (p + q + r)

                                               = ap + aq + ar + bp + bq + br
        For example, (5x – 3) × (3x + 2y – 4) = 5x (3x + 2y – 4) – 3 (3x + 2y – 4)
                                            = (5x × 3x) + (5x × 2y) – (5x × 4) – (3 × 3x) – (3 × 2y) – {3 × (– 4)}

                                            = 15x  + 10xy – 20x – 9x – 6y + 12 = 15x  + 10xy – 29x – 6y + 12
                                                  2
                                                                                    2

              Let’s Attempt


        Example 1:  Multiply: (3x  + 4y ) by (4x  + 3y ).
                                                       3
                                   3
                                         3
                                                 3
        Solution:      (3x  + 4y ) × (4x  + 3y )
                          3
                                            3
                                      3
                               3
                              = 3x (4x  + 3y ) + 4y (4x  + 3y )
                                                           3
                                           3
                                      3
                                  3
                                                     3
                                                  3
                              = (3x  × 4x  + 3x  × 3y ) + (4y  × 4x  + 4y  × 3y ) = (12x  + 9x y ) + (16x y  + 12y )
                                                                                                           6
                                                                                                   3 3
                                                                                   6
                                                                           3
                                                                                         3 3
                                              3
                                        3
                                   3
                                                   3
                                                                3
                                                                      3
                                                          3
                              = 12x  + 25x y  + 12y 6
                                          3 3
                                   6
   74   75   76   77   78   79   80   81   82   83   84