Page 33 - Mathematics Class - XII
P. 33

Viva-Voce




            1.  What is logarithm?
          Ans.  If a is a positive real number, other than 1 and x is a rational number such that a  = N, then we say that
                                                                                              x
               logarithm of N to base  a is x or x is logarithm of N to the base a. Thus, a  = N ⇒ Log  N = x. The
                                                                                          x
                                                                                                        a
               logarithmic function is defined as the inverse of the exponential function.
            2.  If log (5) = b. Express log (10) in terms of b.
                     8                  4
          Ans.  log (10) = log (2) + log (5)
                  4          4        4
                                1     1

                   log(2) = log 4   4  2
                   4
                                     2

                                                             log 5     b   3b                                     2
                By changing of base formula, write: log (5) =    8                                [since log (4) =   ]
                                                      4      log( )4   2    2                              8      3
                                                                8
                                                                       3
                                                 1
                So, log (10) = log (2) + log (5) =     3b     13  b
                      4          4        4
                                                 2    2     2
            3.  Express (log  a)(log  b) in single logarithm.
                           x       a
                         log b
          Ans.  Log  a ×    x   = log  b
                   x     log a       x
                            x
                                                  b = 486?
            4.  What is the value of x when, 2xb  4log  x
                                  b  = b
                                         b  = x
          Ans.  We know that b  4log  x  log  x 4  4
                         b = 2x × x  = 2x
                So, 2xb  4log  x   4     5
                Now, 2x  = 486
                       5
                So, x  = 243
                    5
                           1
                So,  x = 243 5  = 3

            5.  If x, y, z are positive real numbers, then what is the value of   1  +  1    +     1    ?
                                                                          log xyz    log xyz   log xyz
                                                                             xy
                                                                                                   zx
                                                                                        yz
          Ans.     1          1          1
                log xyz    log xyz    log xyz
                   xy
                              yz
                                         zx
                                                                                             1
                                       log xyz  xy    log xyz  yz    log xyz  zx      loog b
                                                                                     a
                                                                                          log a
                                                                                              b

                                       log(xy yz zx    )

                                         xyz
                                       log(xyz  ) 2
                                         xyz
                                      2 log xyz  xyzz
                                      2





                                                                                                                31
   28   29   30   31   32   33   34   35   36   37   38