Page 63 - Maths Skills - 7
P. 63

Rational Numbers                                                                                        61

        Example 4:  Express each of the following rational numbers in standard form.

                            − 28                             60
                       (i)                             (ii)
                             − 42                            −  225

          Solution:    (i)  The denominator of the rational number  − 28  is negative.
                                                                   − 42
                            We first make it positive by multiplying both numerator and denominator with (–1).
                                  − 28   − 28 × −1(  )  28
                            Thus,      =            =
                                  − 42   − 42 × −1(  )  42                 The H.C.F. of 28 and 42 is 14.
                                   28   28 14÷    2
                           So,         =        = .
                                   42   42 14÷    3
                                                                    60
                       (ii)  The denominator of the rational number   − 225    is negative.

                            Multiply both numerator and denominator by (– 1) to make it positive.

                                    60      60 ×−(  1)   − 60
                            Thus,       =              =
                                  −  225  −  225× −(  1)  225              The H.C.F. of 60 and 225 is 15.

                                           ÷
                             So,   − 60  =  − 60 15  =  − 4 .
                                225    225 ÷ 15   15
        Example 5:  Are the following rational numbers equivalent?

                            − 7  14                          5  − 15
                       (i)     ,                       (ii)    ,
                            8   −16                         −  3 18

         Solution:     (i)  – 7 × (– 16) = 112 ; 8 × 14 = 112              (ii)  5 × 18 = 90; (– 3) × (– 15) = 45

                            Since, – 7 × (– 16) = 8 × 14 = 112.                 Since 5 × 18 ≠ (– 3) × (– 15).

                               − 7    14                                        So,   5  ≠  − 15 .
                            So,    =     .                                          − 3    18
                                8    −16

                                                        − 8  x                x    − 8
        Example 6:  Find the value of x, such that: (i)    =             (ii)   =
                                                        20   5               13    39
                            − 8  x                                            x    − 8
        Solution:      (i)     =                                         (ii)    =
                             20  5                                             13  39

                            ⇒  – 8 × 5 = x × 20                               ⇒  x × 39 = – 8 × 13
                                   −×85                                              −×813      − 8
                             ⇒ x =        =− 2                               ⇒ x =           =

                                     20                                                 39      3



                                                    Exercise 4.1


          1.  Write the numerator and the denominator of each of the following rational numbers.
                 −148                     7                       −3                       2
             (i)                     (ii)                    (iii)                   (iv)
                  −249                     13                       13                     − 29
   58   59   60   61   62   63   64   65   66   67   68