Page 68 - Maths Skills - 7
P. 68

66                                                                                                  Maths

                                                    − 5   2       11
        Example 5:  Arrange the rational numbers       ,     and      in ascending order.
                                                      7  −        −15  3
                                                                                           2      2 ×−(  1)  −  2
        Solution:      First, express the given rational numbers with positive denominators   =            =
                                                                                          − 15  − 15× −(  1)  15
                       11    11×−(  1)   − 11
                           =           =       Now, LCM of 7, 15 and 3 is 105.
                       −  3  −× −   1)    3
                               3 (
                       Expressing, each rational number with the LCM as common denominator, we get
                       − 5   515     − 75   − 2   −×27     −14 −11      −11 35     − 385
                              ×
                                                                            ×
                           =       =      ;     =        =     ;      =          =
                              ×
                                                                           ×
                        7    715     105    15    15 × 7   105     3     335        105
                       On comparing the numerators of the obtained rational numbers, we have – 385 < – 75 < – 14.
                       Therefore,  − 385  <  − 75  <  −14  or  11  <  − 5  <  2  .
                                   105    105    105      − 3    7    −15

        Example 6:  Find seven rational numbers between – 3 and – 2.
                             −3            − 2
        Solution:      – 3 =     and – 2 =
                             1              1
                       Multiplying both by 10
                       −×310   =  −30  and   − ×210  =  − 20
                         ×
                                                ×
                        110       10          110       10
                                                                     −    −21  −22  −23   −24  −25  26  −27
                       Hence, the required seven rational numbers are    ,    ,    ,    ,     ,    ,    .
                                                                      10   10   10    10   10   10   10

                                                          −       − 4  2
        Example 7:  Find five rational numbers between        and     .
                                                           7       3
        Solution:      LCM of 7 and 3 is 21
                       −×43   =  −12   and   − ×27  =  −14
                                            ×
                          ×
                        73       21       37       21
                       Multiplying by 10, we get

                       −12 ×10  =  −120  and   −14 ×10  =  −140
                        21 ×10     210         21 ×10     210
                                                                   −      −121  −122   −123  124  −125
                       Hence, the required five rational numbers are     ,     ,      ,      ,      .
                                                                    210    210    210   210    210



                                                    Exercise 4.2


          1.  Draw the number line and represent the following rational numbers on it.
                 5                 − 3               2                 13                    23
             (i)              (ii)             (iii)              (iv)                 (v)   −  4
                 7                  8               5                  3
          2.  In each of the following pairs of rational numbers, find the greater one.

                   8               − 21 7            4                  − 5  8               7 −  5
             (i) − , 0        (ii)      ,      (iii)   0 ,        (iv)     ,           (v)     ,
                   7               35    8          7                   13  − 3              19 38
   63   64   65   66   67   68   69   70   71   72   73