Page 81 - Mathematics Class - XII
P. 81

Viva-Voce




            1.  Define scalar or dot product.                    
                                                           
          Ans.  Scalar product or dot product of two vectors  a and  is defined as
                                                                 b

                ab.    ab cos   where    is the angle between  a and  b  0

                   i  when      0,  then .ab  = ab    ab      ii     when       ,  then a..  =b  a b cos     0
                                                                          2                     2

                        also aa .    aa    aa    a  2              i j .    j k .    ki .    0

                      ii .    jj .    kk .   1
                                                                             
            2.  If  a and   are perpendicular vectors, then what is the value of  ab. ?
                        b
                                
          Ans.  ab.    ab cos     ab cos90       . 0
            3.  What is the dot product of two like vectors?
                        
                  
          Ans.  If  a and   are like vectors, then angle between them is 0°,
                        b
                                              
                  ab.    ab cos      ab cos0      ab .
            4.  What is the value of  ii iji k⋅        ?
                                              ⋅
                                         ⋅ ,
                                           ,


          Ans.  ii.             1 .  11 ;                  0 ;.                 00
                                                             ik
                                        ij.
                                             ij cos 90
                     ii cos    0
                                                                   ik cos 90
                                                      
                              
                                                
                                  
            5.  If the vectors  2i   4 j mk     and  4i    2k  are orthogonal, what is the value of m?
                                                  j
          Ans.  We know that dot product of two orthogonal vectors is zero.


                         
                     
                                           
                So, 2i   4 j mk           j  2k    0
                                 . 4i

                              0      42m          m    2
                   84 2m
                                                          MCQs


                                     j ik.(
          1.  The value of  ij k.(    )         )   ki j.(    )  is
              a)  0                   b)  –1                  c)  1                  d)  3
                                                                →
                                                                   →
                                                         →
                                                  →
          2.  If θ is the angle between two vectors  a  and  b , the  a . b  >  0 only when

              a)  0                   b)  0                   c)  0                  d)  0
                         2                       2
                                                   →
                                →
                                              →
                                   →
                 →
                     →
          3.  If | a × b | = 4 and | a . b | = 2 the | a | | b |  will be equal to
                                                2
                                                     2
              a)  2                   b)  6                   c)  8                  d)  20

          4.  If  ab    bc     ca   then  a    b c   is equal to
                   →                       →                                              →
              a)  2 b                 b)  2 c                 c)  0                  d)  2 a

        Answers:   1. c) 1           2. b) 0                     3. d) 20              4. c) 0
                                                  2
                                                                                                                79
   76   77   78   79   80   81   82   83   84   85   86