Page 159 - Maths Skills - 7
P. 159

Lines and Angles                                                                                       157

            (iii)   a pair of interior angles (or exterior angles) on the same   Fact-o-meter
                side of the transversal is supplementary.
        Then the two lines are parallel.                                      Lines perpendicular to the same
                                                                              lines are parallel to each other.







               Let’s Attempt


        Example 1:  In Fig., AB || CD and l is a transversal. If ∠1 is 55°, then find all the other angles.

        Solution:      Given, ∠1 = 55°.                                                                       l
                       ∠1 + ∠2 = 180°                                      (Linear pair)                 2
                       ⇒  55° + ∠2 = 180°                                                    A         3     1   B
                       ⇒  ∠2 = 180° – 55° = 125°                                                           4
                       ∠3 = ∠1 = 55°                         (Vertically opposite angles)          6   5

                       ∠4 = ∠2 = 125°                        (Vertically opposite angles)    C   7   8           D
                       ∠5 = ∠3 = 55°                          (Alternate interior angles)
                       ∠6 = ∠2 = 125°                            (Corresponding angles)

                       ∠7 = ∠1 = 55°                          (Alternate exterior angles)
                       ∠8 = ∠2 = 125°                         (Alternate exterior angles)
                       Hence, ∠2 = 125°, ∠3 = 55°, ∠4 = 125°, ∠5 = 55°, ∠6 = 125°, ∠7 = 55° and ∠8 = 125°.

        Example 2:  In Fig., AB || CD. Find the value of x. Also find the angles ∠1, ∠2 and ∠3.
        Solution:      3x + 15° = 135°                [Vertically opposite angles]

                       or  3x = 135° – 15°
                       or  3x = 120°                                                       l
                       \  x =  120º  = 40°                                              A  x + 5°  1            B
                                3
                       \  x + 5° = 40° + 5° = 45°
                          ∠1 = 180° – 45° = 135°                                                       2    3x + 15°

                          ∠2 = x + 5° = 45°     [Corresponding angles]                  C             135°    3  D
                       \  ∠3 = ∠2 = 45°         [Vertically opposite angles]
                          Hence, ∠1 = 135°, ∠2 = 45° and ∠3 = 45°.



                                                    Exercise 9.2


          1.  In Fig., AB and CD are parallel lines intersected by a transversal l
            at points E and F respectively. If ∠1 = 45°, find the measure of all
            other angles.



                                                                                         C                       D
   154   155   156   157   158   159   160   161   162   163   164