Page 69 - Maths Skills - 8
P. 69

Cubes and Cube Roots                                                                                    67


                                            −125                                                       64
        Example 5:  Find the cube root of        .              Example 6:  Find the cube root of   3      .
                                             729                                                      2197

                                             3
        Solution:      3  −125  =  3  −125  =  − 125            Solution:      3  64   =  3  64
                          729     3  729    3  729                               2197    3  2197

                       Now,  3 125 =  3  555× ×=  5                            3  64 =  3  2 ×××××      2 =×=      4
                                                                                           2
                                                                                                     2
                                                                                                            2
                                                                                                                2
                                                                                              2
                                                                                                 2

                       3  729 =  333333××××× =×=                               3  2197 =  13 13 13 13×  ×  =
                                                     339
                                                                                        3
                             −125       3  125  − 5                                       64      3  64    4
                       ∴   3       =−        =                                 Hence,  3       =        =
                             729        3  729  9                                        2197    3  2197  13
        Example 7:  Find the cube root of 4.913.
                                                                                          17 4913           2 1000
        Solution:      3  4 913.  =  3  4913  =  3  4913                                  17   289          2   500
                                  1000    3  1000                                         17    17          2   250
                       Factorising 4913 into its prime factors, we get                            1         5   125
                                                                                                            5    25
                       3  4913 =  3 17 17 17×  ×  =  17
                                                                                                            5     5
                                                       25 10=
                       3  1000 =  3  2 ××  2 555××× =×                                                               1
                                     2

                           3  4913  17
                       So,        =    = 17.
                           3
                            1000    10
                       Hence,   4 913 17.  =  .
                               3



                                                    Exercise 4.2


          1.  Find the cube roots of the following.
             (i)  125 × 729                   (ii)  512 × 343                 (iii)  (– 6)  × (– 3)  × (– 4) 3
                                                                                       3
                                                                                               3
          2.  Find the smallest number by which 59400 must be multiplied to make the product a perfect cube. Also
            find the cube root of the product.

          3.  Find the cube roots of the following using prime factorisation.
             (i)  512                (ii)  1331              (iii) 1728              (iv) 2744
          4.  Find the cube roots of the following.

                 216                      − 343                      64                    459
             (i)                     (ii)                    (iii)  27 ×             (iv) 4
                  1331                     1728                        729                 729
          5.  Prove the following.

                                                                    3  9      9
                 3
                      3
             (i)    9    1728    3  9 1728                    (ii)  3    ×  3
                                                                    1728    1728
            (iii)    3  0 001.     3  27    3  0 027.        (iv)    3    2744    () 3     8
                                                                             3
                                                                               6
   64   65   66   67   68   69   70   71   72   73   74