Page 110 - Maths Skills - 7
P. 110
108 Maths
6. If ‘a’ is a non-zero integer then a = 1
0
5 2 5 2 55×
For example, = 5 2 – 2 = 5 and = = 1
0
5 2 5 2 55×
⇒ 5 = 1.
0
Let us learn more through examples.
Let’s Attempt
Example 1: Simplify the following and express the result in exponential form:
(i) 3 × 3 (ii) 4 ÷ 4 (iii) (7 )
3 2
3
5
7
2
2 2 2 3 − 1 4 − 1 3 − 1 2
(iv) (– 3) × (– 3) × (– 3) 3 (v) × (vi) × ×
2
4
3
3
7
7
7
− 3 7 − 3 2
(vii) ÷ 5 (viii) (3 ) × 5 4
2 2
5
Solution: (i) 3 × 3 = 3 7 + 3 = 3 [a × a = a m + n ]
3
n
10
m
7
(ii) 4 ÷ 4 = 4 5 – 2 = 4 [a ÷ a = a m – n ]
3
n
5
2
m
(iii) (7 ) = 7 3 × 2 = 7 [(a ) = a m × n ]
m n
3 2
6
(iv) (– 3) × (– 3) × (– 3) = (– 3) 2 + 4 + 3 = (– 3) 9 [a × a = a m + n ]
3
m
4
n
2
2 2 2 3 2 23+ 2 5
m
n
(v) × = = [a × a = a m + n ]
3
3
3
3
++
− 1
n
(vi) − 1 4 × − 1 3 × − 1 2 = − 1 432 = 7 9 [a × a = a m + n ]
m
7
7
7
7
− 3 7 − 3 2 − 3 7 − 2 − 3 5
(vii) ÷ 5 = = [a ÷ a = a m – n ]
m
n
5
5
5
(viii) (3 ) × 5 = 3 2 × 2 × 5 = 3 × 5 4 [(a ) = a m × n ]
m n
2 2
4
4
4
= (3 × 5) = 15 [a × b = (a × b) ]
m
m
m
4
4
Example 2: Simplify the following and express in exponential form:
8
3 × 3 2 × 4 4 7 × a 7
(i) (ii)
3
×
932 7 × a 4
3 × 3 2 × 4 4
8
Solution: (i) 7 × a 7
932 (ii) 4 = 7 8 – 3 × a 7 – 4 [a ÷ a = a m – n ]
×
m
n
3
7 × a
3 × 3 2 × 4 2 2
= [4 = 2 and 9 = 3 , 32 = 2 ] = 7 × a = 7 ·a 3
5
2
5
3
2
5
2
3 × 2 5
= (3 3 – 2 × 2 4 + 2 – 5 ) [a ÷ a = a m – n and a × a = a m + n ]
m
n
n
m
= 3 × 2 = 6
1
1