Page 86 - Mathematics Class - IX
P. 86

Here,  F=  x  × f 1  = f
                     1     x      1

               Similarly you can find F , F , F , F
                                     2   3  4  5
                       x  × f   f
               But  F=      6  =  6
                   6
                         2x     2
          3.  Take a graph paper and draw two perpendicular axes X′OX and YOY′ on it as shown in Fig. (a).

          4.  Mark class intervals on X-axis and frequencies on Y-axis at equal distance as shown in Fig. (a).
          5.  Draw bars of equal width representing frequencies of case A as f , f , f , f , f , f  and f  as shown in Fig. (a).
                                                                            1  2  3  4  5  6   7


                                        Y


                                        f
                                        7
                                        f
                                        6
                                        f
                                        5 4
                                        f
                                      Frequency  f f 3




                                        f 2
                                        1

                                  X’    O     a   b   c   d   e   f   g   h          X
                                                        Class
                                        Y’
                                                           Fig. (a)

          6.  Draw bars of heights F , F , F , F , F  and F  for case B (varying width) as shown in Fig. (b).
                                    1  2  3   4  5      6






                                        f 7
                                        f 6

                                        f
                                        5                      f
                                                                5
                                        f
                                        4                   f
                                                            4
                                        f 3
                                                       f
                                                        3
                                        f
                                        2          f                  f
                                                    2                  6
                                        f                             2
                                        1      f
                                                1
                                  X’
                                        Y’
                                                           Fig. (b)

          84
   81   82   83   84   85   86   87   88   89   90   91